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ABSTRACT 
 

 
Unobserved Components Model (UCM) is a structural time 
series model and it can decompose the response series into 
latent components, such as trend, cycle and seasonal 
effects and linear and nonlinear regression effects. The 
UCM combines the capabilities of Autoregressive 
Integrated Moving Average (ARIMA) model with 
interpretability of smoothing models. This study was 
carried out to forecast sugarcane production in Sri Lanka 
using UCM model. The best fitting model was selected 
based on Akaike information criterion (AIC) and Bayesian 
Information Criterion (BIC), followed by residual analysis. 
The selected model was used to make sample period 
forecasts (From 1979 - 2013) and post sample period 
forecasts (From 2014 to 2018). Forecasting accuracy of 
model was evaluated using the Mean Absolute Percentage 
Error (MAPE). Linear trend model (adj. R2=77 %) with zero 
variance slope and two cycles was selected as best among 
the tested UCM models for cane production data. MAPE 
was 10.56 % for sample period forecasts and 4.01 % for 
post-sample period forecasts. Predicted cane production 
for year 2019 was 813,888  293,891 tons. 
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INTRODUCTION 

National level agricultural production 
forecasts are important for making policy 
decisions. Therefore, yield-forecasting 
systems are available for major crops such as 
coconut, paddy, rubber, and tea in Sri Lanka. 
However, no such attempts have been 
reported for forecasting national level 
sugarcane production in Sri Lanka. 
Therefore, in this paper, an effort has been 
made to forecast sugarcane production by 
using time series analysis.  

Time series forecasting refers to the use of 
statistical models to forecast future events 
based on known past events. Autoregressive 
Integrated Moving Average (ARIMA) time 
series methodology is widely used to model 
time series in agricultural production. The 
main limitation of the ARIMA approach is 
that it can be applied in the situations where 
either the series to be analysed is stationary, 
or it can be differenced into a stationary 
process (Koopman and Ooms, 2010).  Also 
for small data sets, correlogram and partial 
auto-correlation functions produced by the 
ARIMA model are less informative resulting 
in inappropriate model specifications and 
predictions (Brintha et al., 2014). Moreover, 
ARIMA methodology is empirical in nature 
and fails to explain the underlining 
mechanism (Brintha et al., 2014). 
Unobserved component models (UCM) can 
be used as an alternative approach to 
overcome these problems (Harvey, 1996; 
Koopman and Ooms, 2010).  UCM model 
analyses and forecasts time series data by 
breaking down the response series into 
latent components that are useful in 
explaining and predicting its behavior such 
as trends, seasonal factors, cycles, and 
regression effects due to the predictor 
series. The UCM combines the skillfulness of 
the ARIMA model with interpretability of the 
smoothing model (Koopman and Harvey, 
2003). 

Some studies have been reported on 
effective utilization of UCM for forecasting 
agricultural production. Ravichandran and 
Muthuraman (2006) forecasted rice 
production of India by using the UCM 

approach. Brintha et al. (2014) employed the 
UCM methodology to forecast annual 
coconut production of Sri Lanka. 
Rajarathinam et al. (2016) found that the 
UCM can effectively model the wheat 
production of India.  Singh et al. (2014) 
utilized UCM to forecast gram production of 
India, and discussed the relative merits of 
structural models compared to ARIMA. 

Sugarcane production is influenced by 
cultivated area, environmental factors, 
technological advancements, changes in 
management, as well as yield variations due 
to 6-8 year ratooning cycles, and these 
underlining factors are not consistent over 
time. Therefore, structural models that have 
the capability of capturing latent 
components would be suitable to model the 
cane production data. The aim of this study 
was to model and forecast the annual 
national sugarcane production in Sri Lanka 
using UCM. 

MATERIALS AND METHODS 

Data used in the study 

Annual sugarcane production data from 
1979 to 2018 available in the Sugarcane 
Research Institute and Central Bank Reports 
of Sri Lanka were used for the study.   

UCM 

Basic UCM is consisted of trend, cycle, 
seasonal and irregular components, and 
specified of the form (Harvey and Stock, 
1993).  
 

         𝑌𝑡  = 
𝑡

+ 
𝑡

+ 𝑡 + 𝑡      (1) 

 

Where 
𝑡
,

𝑡
,𝑡,  and 𝑡 denotes the 

stochastic trend, stochastic cycle, seasonal 
component and irregular component 

respectively. Here 𝑡 is assumed to be a 

Gaussian white noise with variance 
2. Since 

annual data is used, seasonal effect cannot be 
identified. In the absence of seasonal 
component, equation (1) reduces to 
equation (2). 

         𝑌𝑡  =  𝑡 + 
𝑡

+ 𝑡     (2) 



Ariyawansha et al (2020) Tropical Agricultural Research, 31(2): 65-74                                                                                | 67 

 

 

Estimating trend effect 

Trend effect of the UCM can be modeled as 
Local liner model (LLM) i.e. Random Walk 
model (RWM) or Locally Linear Time (LLT) 
trend (Harvey, 2001).  

Harvey and Koopman (2009) formulated 
RWM as equation (3) 
 


𝑡

=  
𝑡−1

+ 𝑡 ,      𝑡  iid  N(0,
2)      (3) 

 
In the local linear trend model, the trend can 
be modelled as a stochastic component with 

varying level (
𝑡
) and slope (

𝑡
). The LLT 

model can be described by the following 
equations. 

Level:    
𝑡

=  
𝑡−1

+ 
𝑡−1

+ 𝑡   ;     

𝑡  iid  N(0,
2)   (4.1) 

Slope:     
𝑡

=  
𝑡−1

+ 𝑡    ;        

 𝑡 iid  N(0,
2)   (4.2) 

The disturbances  𝑡   and  𝑡 are assumed to 

be mutually independent. If 
2  is set to zero 

then the resulting model has a smooth trend.  

If   variance 
2  set equal to zero, then the 

resulting model has a linear trend with fixed 
slope. If both variances are zero, then the 
resulting model has a deterministic linear 
time trend (equation 5).   


𝑡

=  
0

+ 
0

 t   (5) 

 

Estimating cyclic effect 
Cyclic effects are similar to seasonal effects 
but the period is not known and determined 
from the data.  A periodic pattern can be 
expressed as a sum of cycles. Cyclical 
fluctuations with time 

𝑡
 with frequency  

are measured in radians. Period of a cycle is 
defined as the time taken to go through its 
complete sequence of values, and it is equal 

to 2 ⁄ .  Depending on two parameters ( 
& ), cyclical fluctuations can be expressed 
as a mixture of sine and cosine waves as 
given in equations 6 and 7 (Harvey and 
Stock, 1993) 


𝑡

=  𝑐𝑜𝑠 𝑡 +  𝑠𝑖𝑛 𝑡  (6) 


𝑡
∗ = − 𝑠𝑖𝑛 𝑡 +  𝑐𝑜𝑠 𝑡   (7) 

Where,  √2 + 2
  and arc tan ( / ) 

represent  the amplitude and phase 
responsively. 
Following Harvey (1996), cycles can be 
made stochastic by allowing the parameters 
 and  to evolve over time. 

[


𝑡


𝑡
∗] =  [

cos  sin 
−𝑠𝑖𝑛  𝑐𝑜𝑠 

] [


𝑡−1


𝑡−1
∗ ] +

 [
𝑡

𝑡
∗] ,    t=1, 2, 3,….T   (8 ) 

Here the correlation coefficient  is the 

damping factor, where 01. The 𝑡 and 𝑡
∗ 

are uncorrelated white noise disturbance 
terms with zero mean and common 

variance 𝑣
2. This results in a damped 

stochastic cycle that has time varying 
amplitude and phase. The parameters of the 
cycle component are the damping factor , 

the frequency , and the variance 𝑣
2 of the 

disturbance term 𝑣𝑡 . When the damping 

factor is less than one, 
𝑡
 is stationary. If   is 

equal to zero or  the model reduces to the 
first order auto regressive process.  
 
Assessing the model fit  
The best fitting model is selected based on 
Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) as 
shown in equations 9 and 10. 
 

AIC = −2 log L + 2n  (9) 
 

BIC = −2 log L + n log T  (10) 

Where, L denotes full likelihood value of the 
fitted model. The n is the number of free-
parameters that are estimated in the chosen 
model. T is the total number of observations 
used to estimate the candidate model. These 
two criteria are useful for discriminating 
among various competing UCM models. The 
model that minimizes these two measures 
was selected as the best fitting model. 

Residual analysis  
Residual analysis is important to check the 
model adequacy with independently and 
identically distributed residuals. The 
residual diagnostic plots were used to check 
the normality (histogram and QQ plot) and 
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the whiteness (ACF and PACF) of the 
residuals.  

Forecasting and accuracy checking 

After verification of the assumptions of the 
residuals, the selected model was used to 
make sample period forecasts (From 1979-
2013) and post sample period forecasts 
(From 2014 to 2018). Mean Absolute 
Percentage Error (MAPE) was used to 
evaluate the forecasting accuracy of the 
model (equation 11).          

MAPE =
1

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐴𝑐𝑡𝑢𝑎𝑙
|  𝑋 100

   (11) 
 

After evaluating the model accuracy, 
forecasts were updated by using the full data 
set (From 1979 – 2018). Final conclusions on 
the forecasts were made based on the full 
dataset. 
 
 

RESULTS AND DISCUSSION 

The time series plot of sugarcane production 
from 1979 to 2018 is depicted in Figure 1.  
Up to mid-1980’s the cane production varied 
between 200,000 t to 330,000 t with the 
contribution of the Kantale and Hingurana 
sugar industries. In mid-1980’s the sugar 
industry was expanded with the 
establishment of two new sugar industries, 
Pelwatte and Sevanagala. Therefore, cane 
production was increased gradually during 
the period 1986 to1996 with the expansion 
of cultivated extent due to contribution of 
four sugar industries. However, downfall of 
sugar industry was observed after its 
restructuring during early 1990’s due to 
closure of sugar mills in Kantale in early 
1992 and in Hingurana in 1997. Therefore, 
cane production gradually declined from 
1998 to 2011. With restarting of Hingurana 
sugar industry, cane production showed an 
upward trend from 2012. 

 

Figure 1: Time series plot of national cane production in Sri Lanka during 1979-2018. 
 

After observing the general pattern, UCM 
technique was used to detect all possible 
time series components (level, slope, cycle, 
and irregular component) in the sugarcane 
production. 

At the first stage, analysis was aimed to 
detect the existing time varying components 

in the data. The error variances of the 
irregular, level slope and cyclic components 
were called “free parameters” in the model 
and their estimates are given in the Table 1. 
These estimates and their corresponding t-
values were used to test the null hypothesis 
that the corresponding component is non- 
stochastic. 
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Table 1: Final estimates of the free parameters 

Component Parameter Estimate Std. Error t Value P > t 

Irregular Error Variance 1085181806 809336313 1.34 0.18 

Level Error Variance 2229128429 1483599009 1.5 0.133 

Slope Error Variance 0.12479 2167 0 1 

Cycle 1 Damping Factor 1 0.00019 5235.4 <.0001 

Cycle 1 Period  8.60129 0.25487 33.75 <.0001 

Cycle 1 Error Variance 
 

11018 12739.2 0.86 0.3871 

Cycle 2 Damping Factor 
 

1 0.0001941 5151.9 <.0001 

Cycle 2 Period 
 

31.09 3.61842 8.59 <.0001 

Cycle 2 Error Variance 148955 169803.6 0.88 0.3804 

 
The results revealed that disturbance 
variance of the level and slope components 
were not significant. The slope has recorded 
the highest p value in the free parameter 
(Table 1). This suggests that the slope is not 
time varying and should be made 
deterministic. Therefore, slope can be 
treated as a constant, i.e. has a zero variance.  
Dampening coefficients and frequency of 
cycles are highly significant; therefore, cyclic 
term is contributing to the model and should 
be retained.  

At the second stage, the significance analysis 
of components was carried out and it was 
used to decide the component retention in 
the model by testing the following 
hypothesis using the Chi-square statistics. 

H0 :   Considered component is not 
 significant 
H1:   Considered component is significant 
 

Table 2: Significance Analysis of Components (Based on the Final State) 
 

Component DF Chi-Square P > Chi-Square 

Irregular 1 0.00 0.9459 

Level 1 179.62 <.0001 

Slope 1 1.58 0.2092 

Cycle 1 2 13.34 0.0013 

Cycle 2 2 17.08 0.0002 

Results of the analysis are given in the table 
2 and it revealed that, level and cycles are 
significant. Therefore, these components 
should be retained in the model. The 
irregular component was also retained in the 

model as a matter of principle since it is a 
stochastic component.  Brintha et al. (2014) 
employed UCM to analyse coconut 
production in Sri Lanka and found that the 
level and slope components have non-
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stochastic processes. Similar results were 
reported in their study regarding 
significance of level and slope components. 
Rajarathnam et al. analysed area, production 
and productivity of wheat crops in India 
using the UCM and they found that UCM with 
slope variance zero was suitable for 
forecasting wheat production. 

At the next step, data set was re-analyzed by 
making the slope deterministic. Lower 

accuracy measures (AIC=977.96 and BIC 
991.06), and residual analysis suggested the 
linear trend model with zero variance slope 
and two cycles is the best among the tested 
UCM for cane production time series of Sri 
Lanka.  The likelihood algorithm converged 
after 28 iterations. Selected model reported 
an adjusted R2 value equal to 0.77, which can 
be considered a good fit.  

Table 3: Summary statistics for cycles. 

Name Type Period Frequency 
Damping 

Factor 
Final 

Amplitude 

Cycle 1 Stationary 8.6 0.73049 1.00000 57503 

Cycle 2 Stationary 31.09 0.20209 1.00000 213141 

 

 
 
Figure 2: Smoothed cycle 1 for cane production with 95 % confidence limits (dotted line 

indicates the beginning of forecasted values). 
 
Summary of cycles is presented in Table 3.  
The estimated periods of cycles are 8.6 and 
31.09 for  
cycle 1 and the estimated damping factor is 
equal to 1, implying that the periodic pattern 
reflected by the cycle 1 is persistent as 
shown in Figure 2. The damping factor equal 
to one for the cycle 2 shows that the effect of 

shock persists in the data. However, it was 
not possible to detect such persistence from 
the cyclic pattern depicted by the second 
cycle (figure 3), since, it represent only one 
cycle due to the 31 years long cyclic period 
(nearly two third fraction of the full data 
set).   
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Figure 3: Smoothed cycle 2 for cane production with 95 % confidence limits (dotted line 

indicates the beginning of forecasted values). 

 

Figure 4: Smoothed trend for cane production with 95 % confidence limits (dotted line 
indicates the beginning of forecasted values). 

 
Smooth trend for cane production is 
depicted in Figure 4. Predictions for cane 
production show increasing trends. 
Expected increase may be due to expansion 
of cultivated area, and higher yields due to 
new high yielding sugarcane varieties, and 
other technological advances. 

 
Residual analysis 
 
Panel of residual diagnostic plots for the 
fitted model is shown in Figure 5. Histogram 
and quantile plots agree with normality of 
residuals and it was confirmed by the non-
significance with Anderson Darling 

-200000

0

200000
S
m

oo
th

ed
 C

yc
le

2

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

year

Start of multi-step forecasts95% Confidence Limits

Smoothed Cycle2 for cane_production
Period = 31.09

200000

400000

600000

800000

1000000

1200000

ca
ne

_
pr

od
uc

tio
n

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

year

95% Confidence LimitsStart of multi-step forecastsActual

Smoothed Trend for cane_production



Ariyawansha et al (2020) Tropical Agricultural Research, 31(2): 65-74                                                                                      | 72 

 

normality test (p=0.9) and Shapiro-Wilks 
test (p>0.1). ACF and PACF plots also do not 
exhibit violations of the whiteness 

assumptions; the correlations at all non-zero 
lags seem to be non-significant.   
 
 

 
 
Figure 5: Residual diagnostic plots for the selected cane production model. 
 

Forecasting and accuracy checking: 

 

Figure 6: Forecasts for cane production (dotted line indicates the beginning of forecasted 
values). 

 

Actual and predicted values of cane 
production showed that predicted values are 
closer to actuals implying the accuracy of the 
model (Figure 6).  

Table 4 presents the forecasted values of the 
cane production and confidence intervals 

based on the selected UCM model. 
Forecasted error percentages for years 2014 
to 2018 were below 5 percent except in the 
year 2016. Reason for high deviation 
between expected and observed values is 
due to the considerable increase in cane 
production during 2016 compared to 
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previous years. Increase of harvested area 
was due to the expansion of sugarcane 
cultivation, high yielding varieties, 
improvements in irrigation systems and 
cultivation practices which were the main 
contributory factors for the increased 
production in year 2016 (Central Bank, 

2016).  MAPE calculated for post sample 
period is 4.01 %., indicating high 
forecasting accuracy according to the 
classification criteria given by Lewis based 
on MAPE values (Lewis, 1982). 

 

 

Table 4:  Forecasts for cane production (t) from 2014-2020 

 

Year 

 

 

Observed 
value 

 

Forecasted 
value 

95% Confidence Limits  

Absolute % 
error Lower Upper 

2014 657000 675723 533286 818159 2.85 

2015 750000 713345 522704 903985 4.89 

2016 798000 730406 498204 962608 8.47 

2017 747000 740640 472140 1009141 0.85 

2018 786110 762662 461906 1063417 2.98 

2019  813888 519997 1107778  

2020  883760 565117 1202403  

 

CONCLUSIONS 

UCM with Linear trend with slope variance 
zero and two cycles can be used to forecast 
sugarcane production in Sri Lanka. The 
model explained 77 % yield variability 
between years. MAPE was 10.56 % and 4.01 
% for sample period forecasts and post 
sample period forecasts respectively. 
Prediction for year 2019 was 813,888 tons 
with lower and upper confidence interval of 
519,997 and 1,107,778 tons. Future 
predictions showed increasing trend in cane 
production. 

It is suggested to update the model 
periodically with incorporation of new data 
to improve the accuracy of estimates. 
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